Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300690

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an aggressive interstitial lung disease associated with progressive and irreversible deterioration of respiratory functions that lacks curative therapies. Despite IPF being associated with a dysregulated immune response, current antifibrotics aim only at limiting fibroproliferation. Transcriptomic analyses show that the P2RX7/IL18/IFNG axis is downregulated in IPF patients and that P2RX7 has immunoregulatory functions. Using our positive modulator of P2RX7, we show that activation of the P2RX7/IL-18 axis in immune cells limits lung fibrosis progression in a mouse model by favoring an antifibrotic immune environment, with notably an enhanced IL-18-dependent IFN-γ production by lung T cells leading to a decreased production of IL-17 and TGFß. Overall, we show the ability of the immune system to limit lung fibrosis progression by targeting the immunomodulator P2RX7. Hence, treatment with a small activator of P2RX7 may represent a promising strategy to help patients with lung fibrosis.


Assuntos
Fibrose Pulmonar , Animais , Camundongos , Humanos , Interleucina-18 , Adjuvantes Imunológicos , Agressão , Modelos Animais de Doenças , Receptores Purinérgicos P2X7/genética
2.
Brain Behav Immun ; 117: 330-346, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38309640

RESUMO

Nutrient composition in obesogenic diets may influence the severity of disorders associated with obesity such as insulin-resistance and chronic inflammation. Here we hypothesized that obesogenic diets rich in fat and varying in fatty acid composition, particularly in omega 6 (ω6) to omega 3 (ω3) ratio, have various effects on energy metabolism, neuroinflammation and behavior. Mice were fed either a control diet or a high fat diet (HFD) containing either low (LO), medium (ME) or high (HI) ω6/ω3 ratio. Mice from the HFD-LO group consumed less calories and exhibited less body weight gain compared to other HFD groups. Both HFD-ME and HFD-HI impaired glucose metabolism while HFD-LO partly prevented insulin intolerance and was associated with normal leptin levels despite higher subcutaneous and perigonadal adiposity. Only HFD-HI increased anxiety and impaired spatial memory, together with increased inflammation in the hypothalamus and hippocampus. Our results show that impaired glucose metabolism and neuroinflammation are uncoupled, and support that diets with a high ω6/ω3 ratio are associated with neuroinflammation and the behavioral deterioration coupled with the consumption of diets rich in fat.


Assuntos
Insulinas , Doenças Neuroinflamatórias , Animais , Camundongos , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Inflamação , Glucose
3.
Nanomaterials (Basel) ; 13(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37947721

RESUMO

Weak fluorescence signals, which are important in research and applications, are often masked by the background. Different amplification techniques are actively investigated. Here, a broadband, geometry-independent and flexible feedback scheme based on the random scattering of dielectric nanoparticles allows the amplification of a fluorescence signal by partial trapping of the radiation within the sample volume. Amplification of up to a factor of 40 is experimentally demonstrated in ultrapure water with dispersed TiO2 nanoparticles (30 to 50 nm in diameter) and fluorescein dye at 200 µmol concentration (pumped with 5 ns long, 3 mJ laser pulses at 490 nm). The measurements show a measurable reduction in linewidth at the emission peak, indicating that feedback-induced stimulated emission contributes to the large gain observed.

4.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37546967

RESUMO

Biomolecular condensates regulate a wide range of cellular functions from signaling to RNA metabolism 1, 2 , yet, the physiologic conditions regulating their formation remain largely unexplored. Biomolecular condensate assembly is tightly regulated by the intracellular environment. Changes in the chemical or physical conditions inside cells can stimulate or inhibit condensate formation 3-5 . However, whether and how the external environment of cells can also regulate biomolecular condensation remain poorly understood. Increasing our understanding of these mechanisms is paramount as failure to control condensate formation and dynamics can lead to many diseases 6, 7 . Here, we provide evidence that matrix stiffening promotes biomolecular condensation in vivo . We demonstrate that the extracellular matrix links mechanical cues with the control of glucose metabolism to sorbitol. In turn, sorbitol acts as a natural crowding agent to promote biomolecular condensation. Using in silico simulations and in vitro assays, we establish that variations in the physiological range of sorbitol, but not glucose, concentrations, are sufficient to regulate biomolecular condensates. Accordingly, pharmacologic and genetic manipulation of intracellular sorbitol concentration modulates biomolecular condensates in breast cancer - a mechano-dependent disease. We propose that sorbitol is a mechanosensitive metabolite enabling protein condensation to control mechano-regulated cellular functions. Altogether, we uncover molecular driving forces underlying protein phase transition and provide critical insights to understand the biological function and dysfunction of protein phase separation.

5.
PLoS Comput Biol ; 19(4): e1010993, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068087

RESUMO

Dorsal horn of the spinal cord is an important crossroad of pain neuraxis, especially for the neuronal plasticity mechanisms that can lead to chronic pain states. Windup is a well-known spinal pain facilitation process initially described several decades ago, but its exact mechanism is still not fully understood. Here, we combine both ex vivo and in vivo electrophysiological recordings of rat spinal neurons with computational modeling to demonstrate a role for ASIC1a-containing channels in the windup process. Spinal application of the ASIC1a inhibitory venom peptides mambalgin-1 and psalmotoxin-1 (PcTx1) significantly reduces the ability of deep wide dynamic range (WDR) neurons to develop windup in vivo. All deep WDR-like neurons recorded from spinal slices exhibit an ASIC current with biophysical and pharmacological characteristics consistent with functional expression of ASIC1a homomeric channels. A computational model of WDR neuron supplemented with different ASIC1a channel parameters accurately reproduces the experimental data, further supporting a positive contribution of these channels to windup. It also predicts a calcium-dependent windup decrease for elevated ASIC conductances, a phenomenon that was experimentally validated using the Texas coral snake ASIC-activating toxin (MitTx) and calcium-activated potassium channel inhibitory peptides (apamin and iberiotoxin). This study supports a dual contribution to windup of calcium permeable ASIC1a channels in deep laminae projecting neurons, promoting it upon moderate channel activity, but ultimately leading to calcium-dependent windup inhibition associated to potassium channels when activity increases.


Assuntos
Cálcio , Dor , Animais , Ratos , Cálcio/metabolismo , Simulação por Computador , Neurônios/fisiologia , Peptídeos , Apamina/metabolismo
6.
F1000Res ; 11: 392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685190

RESUMO

The Open Microscopy Environment Remote Objects (OMERO) is an open-source image manager used by many biologists to store, organize, view, and share microscopy images, while the open-source software ImageJ/Fiji is a very popular program used to analyse them. However, there is a lack of an easy-to-use generic tool to run a workflow on a batch of images without having to download them to local computers, and to automatically organize the results in OMERO. To offer this functionality, we have built (i) a library in Java: "Simple OMERO Client", to communicate with an OMERO database from Java software, (ii) an ImageJ/Fiji plugin to run a macro-program on a batch of images from OMERO and (iii) a new set of Macro Functions, "OMERO Macro extensions", dedicated to interact with OMERO in macro-programming. The latter is intended for developers, with additional possibilities using tag criteria, while the "Batch OMERO plugin" is more geared towards non-IT scientists and has a very easy to use interface. Each tool is illustrated with a use case.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Bases de Dados Factuais , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microscopia , Fluxo de Trabalho
7.
Cell Mol Life Sci ; 79(7): 378, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739402

RESUMO

SUMOylation is a post-translational modification essential to cell homeostasis. A tightly controlled equilibrium between SUMOylation and deSUMOylation processes is also critical to the neuronal function including neurotransmitter release and synaptic transmission and plasticity. Disruption of the SUMOylation homeostasis in neurons is associated with several neurological disorders. The balance between the SUMOylation and deSUMOylation of substrate proteins is maintained by a group of deSUMOylation enzymes called SENPs. We previously showed that the activation of type 5 metabotropic glutamate receptors (mGlu5R) first triggers a rapid increase in synaptic SUMOylation and then upon the sustained activation of these receptors, the deSUMOylase activity of SENP1 allows the increased synaptic SUMOylation to get back to basal levels. Here, we combined the use of pharmacological tools with subcellular fractionation and live-cell imaging of individual hippocampal dendritic spines to demonstrate that the synaptic accumulation of the deSUMOylation enzyme SENP1 is bidirectionally controlled by the activation of type 1 mGlu1 and mGlu5 receptors. Indeed, the pharmacological blockade of mGlu1R activation during type 1 mGluR stimulation leads to a faster and greater accumulation of SENP1 at synapses indicating that mGlu1R acts as a brake to the mGlu5R-dependent deSUMOylation process at the post-synapse. Altogether, our findings reveal that type 1 mGluRs work in opposition to dynamically tune the homeostasis of SUMOylation at the mammalian synapse.


Assuntos
Receptores de Glutamato Metabotrópico , Sumoilação , Animais , Hipocampo/metabolismo , Mamíferos/metabolismo , Neurônios/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/metabolismo
8.
Cell Rep ; 39(5): 110765, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35508123

RESUMO

Cocaine use is a major comorbidity of HIV-associated neurocognitive disorder (HAND). In this study, we show that cocaine exposure worsens the learning and memory of doxycycline-inducible and brain-specific HIV Tat transgenic mice (iTat) and results in 14,838 hypermethylated CpG-related differentially methylated regions (DMRs) and 15,800 hypomethylated CpG-related DMRs, which are linked to 52 down- and 127 upregulated genes, respectively, in the hippocampus of iTat mice. These genes are mostly enriched at the neuronal function-, cell morphology-, and synapse formation-related extracellular matrix (ECM) receptor-ligand interaction pathway and mostly impacted in microglia. The accompanying neuropathological changes include swollen dendritic spines, increased synaptophysin expression, and diminished glial activation. We also find that sex (female) and age additively worsen the behavioral and pathological changes. These findings together indicate that chronic cocaine and long-term Tat expression interactively contribute to HAND, likely involving changes of DNA methylation and ECM receptor-ligand interactions.


Assuntos
Cocaína , Animais , Cocaína/farmacologia , DNA/metabolismo , Metilação de DNA/genética , Feminino , Expressão Gênica , Ligantes , Transtornos da Memória/genética , Camundongos , Camundongos Transgênicos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
9.
Transl Psychiatry ; 12(1): 119, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338117

RESUMO

Pharmacological inhibition of phosphodiesterase 2A (PDE2A), which catalyzes the hydrolysis of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), has recently been proposed as a novel therapeutic tool for Fragile X Syndrome (FXS), the leading monogenic cause of Autism Spectrum Disorder (ASD). Here, we investigated the role of PDE2A in ASD pathogenesis using two rat models that reflect one of either the genetic or environmental factors involved in the human disease: the genetic Fmr1-Δexon 8 rat model and the environmental rat model based on prenatal exposure to valproic acid (VPA, 500 mg/kg). Prior to behavioral testing, the offspring was treated with the PDE2A inhibitor BAY607550 (0.05 mg/kg at infancy, 0.1 mg/kg at adolescence and adulthood). Socio-communicative symptoms were assessed in both models through the ultrasonic vocalization test at infancy and three-chamber test at adolescence and adulthood, while cognitive impairments were assessed by the novel object recognition test in Fmr1-Δexon 8 rats (adolescence and adulthood) and by the inhibitory avoidance test in VPA-exposed rats (adulthood). PDE2A enzymatic activity in VPA-exposed infant rats was also assessed. In line with the increased PDE2A enzymatic activity previously observed in the brain of Fmr1-KO animals, we found an altered upstream regulation of PDE2A activity in the brain of VPA-exposed rats at an early developmental age (p < 0.05). Pharmacological inhibition of PDE2A normalized the communicative (p < 0.01, p < 0.05), social (p < 0.001, p < 0.05), and cognitive impairment (p < 0.001) displayed by both Fmr1-Δexon 8 and VPA-exposed rats. Altogether, these data highlight a key role of PDE2A in brain development and point to PDE2A inhibition as a promising pharmacological approach for the deficits common to both FXS and ASD.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Feminino , Proteína do X Frágil de Retardo Mental , Síndrome do Cromossomo X Frágil/genética , Gravidez , Ratos , Ácido Valproico/farmacologia
10.
J Biol Chem ; 298(5): 101780, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35231443

RESUMO

Membrane contact sites are specialized areas where the membranes of two distinct organelles are physically connected and allow for the exchange of molecules and for signaling processes. Understanding the mechanisms whereby proteins localize to and function in these structures is of special interest; however, methods allowing for reconstitution of these contact sites are few and only based on synthetic membranes and recombinant proteins. Here, we devised a strategy to create in situ artificial contact sites between synthetic and endogenous organelle membranes. Liposomes functionalized with a peptide containing a two phenylalanines in an acidic tract (FFAT) motif were added to adherent cells whose plasma membrane was perforated. Confocal and super-resolution microscopy revealed that these liposomes associated with the endoplasmic reticulum via the specific interaction of the FFAT motif with endoplasmic reticulum-resident vesicle-associated membrane protein-associated proteins. This approach allowed for quantification of the attachment properties of peptides corresponding to FFAT motifs derived from distinct proteins and of a protein construct derived from steroidogenic acute regulatory protein-related lipid transfer domain-3. Collectively, these data indicate that the creation of in situ artificial contact sites represents an efficient approach for studying the membrane-tethering activity of proteins and for designing membrane contact site reconstitution assays in cellular contexts.


Assuntos
Retículo Endoplasmático , Lipossomos , Membranas Artificiais , Motivos de Aminoácidos , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Lipossomos/química , Lipossomos/metabolismo , Lipossomos/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Recombinantes , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
11.
Cell Metab ; 33(7): 1342-1357.e10, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34102109

RESUMO

Mechanical signals from the tumor microenvironment modulate cell mechanics and influence cell metabolism to promote cancer aggressiveness. Cells withstand external forces by adjusting the stiffness of their cytoskeleton. Microtubules (MTs) act as compression-bearing elements. Yet how cancer cells regulate MT dynamic in response to the locally constrained environment has remained unclear. Using breast cancer as a model of a disease in which mechanical signaling promotes disease progression, we show that matrix stiffening rewires glutamine metabolism to promote MT glutamylation and force MT stabilization, thereby promoting cell invasion. Pharmacologic inhibition of glutamine metabolism decreased MT glutamylation and affected their mechanical stabilization. Similarly, decreased MT glutamylation by overexpressing tubulin mutants lacking glutamylation site(s) decreased MT stability, thereby hampering cancer aggressiveness in vitro and in vivo. Together, our results decipher part of the enigmatic tubulin code that coordinates the fine-tunable properties of MT and link cell metabolism to MT dynamics and cancer aggressiveness.


Assuntos
Ácido Glutâmico/metabolismo , Mecanotransdução Celular/fisiologia , Microtúbulos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Células Cultivadas , Metabolismo Energético/fisiologia , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo , Microambiente Tumoral/fisiologia
12.
Nat Commun ; 12(1): 1557, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692361

RESUMO

Fragile X syndrome (FXS) is the most frequent form of inherited intellectual disability and the best-described monogenic cause of autism. CGG-repeat expansion in the FMR1 gene leads to FMR1 silencing, loss-of-expression of the Fragile X Mental Retardation Protein (FMRP), and is a common cause of FXS. Missense mutations in the FMR1 gene were also identified in FXS patients, including the recurrent FMRP-R138Q mutation. To investigate the mechanisms underlying FXS caused by this mutation, we generated a knock-in mouse model (Fmr1R138Q) expressing the FMRP-R138Q protein. We demonstrate that, in the hippocampus of the Fmr1R138Q mice, neurons show an increased spine density associated with synaptic ultrastructural defects and increased AMPA receptor-surface expression. Combining biochemical assays, high-resolution imaging, electrophysiological recordings, and behavioural testing, we also show that the R138Q mutation results in impaired hippocampal long-term potentiation and socio-cognitive deficits in mice. These findings reveal the functional impact of the FMRP-R138Q mutation in a mouse model of FXS.


Assuntos
Disfunção Cognitiva/genética , Disfunção Cognitiva/fisiopatologia , Proteína do X Frágil de Retardo Mental/metabolismo , Mutação de Sentido Incorreto/fisiologia , Receptores de Glutamato/metabolismo , Animais , Biotinilação , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Células Cultivadas , Disfunção Cognitiva/metabolismo , Feminino , Proteína do X Frágil de Retardo Mental/genética , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Immunoblotting , Potenciação de Longa Duração/genética , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Mutação de Sentido Incorreto/genética , Técnicas de Patch-Clamp , Receptores de Glutamato/genética
13.
J Cell Sci ; 134(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483367

RESUMO

Ciliogenesis is a coordinated process initiated by the recruitment and fusion of pre-ciliary vesicles at the distal appendages of the mother centriole through mechanisms that remain unclear. Here, we report that EFA6A (also known as PSD), an exchange factor for the small G protein Arf6, is involved in early stage of ciliogenesis by promoting the fusion of distal appendage vesicles forming the ciliary vesicle. EFA6A is present in the vicinity of the mother centriole before primary cilium assembly and prior to the arrival of Arl13B-containing vesicles. During ciliogenesis, EFA6A initially accumulates at the mother centriole and later colocalizes with Arl13B along the ciliary membrane. EFA6A depletion leads to the inhibition of ciliogenesis, the absence of centrosomal Rab8-positive structures and the accumulation of Arl13B-positive vesicles around the distal appendages. Our results uncover a novel fusion machinery, comprising EFA6A, Arf6 and Arl13B, that controls the coordinated fusion of ciliary vesicles docked at the distal appendages of the mother centriole.


Assuntos
Fatores de Ribosilação do ADP , Centríolos , Cílios , Fatores de Troca do Nucleotídeo Guanina , Animais , Linhagem Celular , Vesículas Citoplasmáticas
14.
Glia ; 69(1): 42-60, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32659044

RESUMO

In humans, obesity is associated with brain inflammation, glial reactivity, and immune cells infiltration. Studies in rodents have shown that glial reactivity occurs within 24 hr of high-fat diet (HFD) consumption, long before obesity development, and takes place mainly in the hypothalamus (HT), a crucial brain structure for controlling body weight. Here, we sought to characterize the postprandial HT inflammatory response to 1, 3, and 6 hr of exposure to either a standard diet (SD) or HFD. HFD exposure increased gene expression of astrocyte and microglial markers (glial fibrillary acidic protein [GFAP] and Iba1, respectively) compared to SD-treated mice and induced morphological modifications of microglial cells in HT. This remodeling was associated with higher expression of inflammatory genes and differential regulation of hypothalamic neuropeptides involved in energy balance regulation. DREADD and PLX5622 technologies, used to modulate GFAP-positive or microglial cells activity, respectively, showed that both glial cell types are involved in hypothalamic postprandial inflammation, with their own specific kinetics and reactiveness to ingested foods. Thus, recurrent exacerbated postprandial inflammation in the brain might promote obesity and needs to be characterized to address this worldwide crisis.


Assuntos
Gorduras na Dieta , Microglia , Animais , Dieta Hiperlipídica/efeitos adversos , Proteína Glial Fibrilar Ácida , Hipotálamo , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade
15.
Genome Res ; 30(11): 1633-1642, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32973039

RESUMO

To gain better insight into the dynamic interaction between cells and their environment, we developed the agonist-induced functional analysis and cell sorting (aiFACS) technique, which allows the simultaneous recording and sorting of cells in real-time according to their immediate and individual response to a stimulus. By modulating the aiFACS selection parameters, testing different developmental times, using various stimuli, and multiplying the analysis of readouts, it is possible to analyze cell populations of any normal or pathological tissue. The association of aiFACS with single-cell transcriptomics allows the construction of functional tissue cartography based on specific pharmacological responses of cells. As a proof of concept, we used aiFACS on the dissociated mouse brain, a highly heterogeneous tissue, enriching it in interneurons by stimulation with KCl or with AMPA, an agonist of the glutamate receptors, followed by sorting based on calcium levels. After AMPA stimulus, single-cell transcriptomics of these aiFACS-selected interneurons resulted in a nine-cluster classification. Furthermore, we used aiFACS on interneurons derived from the brain of the Fmr1-KO mouse, a rodent model of fragile X syndrome. We showed that these interneurons manifest a generalized defective response to AMPA compared with wild-type cells, affecting all the analyzed cell clusters at one specific postnatal developmental time.


Assuntos
Encéfalo/metabolismo , Separação Celular/métodos , Citometria de Fluxo/métodos , Interneurônios/metabolismo , RNA-Seq , Análise de Célula Única , Encéfalo/citologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Proteína do X Frágil de Retardo Mental/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Técnicas de Inativação de Genes , Interneurônios/efeitos dos fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
16.
Am J Respir Crit Care Med ; 202(12): 1636-1645, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32726565

RESUMO

Rationale: The respiratory tract constitutes an elaborate line of defense that is based on a unique cellular ecosystem.Objectives: We aimed to investigate cell population distributions and transcriptional changes along the airways by using single-cell RNA profiling.Methods: We have explored the cellular heterogeneity of the human airway epithelium in 10 healthy living volunteers by single-cell RNA profiling. A total of 77,969 cells were collected at 35 distinct locations, from the nose to the 12th division of the airway tree.Measurements and Main Results: The resulting atlas is composed of a high percentage of epithelial cells (89.1%) but also immune (6.2%) and stromal (4.7%) cells with distinct cellular proportions in different regions of the airways. It reveals differential gene expression between identical cell types (suprabasal, secretory, and multiciliated cells) from the nose (MUC4, PI3, SIX3) and tracheobronchial (SCGB1A1, TFF3) airways. By contrast, cell-type-specific gene expression is stable across all tracheobronchial samples. Our atlas improves the description of ionocytes, pulmonary neuroendocrine cells, and brush cells and identifies a related population of NREP-positive cells. We also report the association of KRT13 with dividing cells that are reminiscent of previously described mouse "hillock" cells and with squamous cells expressing SCEL and SPRR1A/B.Conclusions: Robust characterization of a single-cell cohort in healthy airways establishes a valuable resource for future investigations. The precise description of the continuum existing from the nasal epithelium to successive divisions of the airways and the stable gene expression profile of these regions better defines conditions under which relevant tracheobronchial proxies of human respiratory diseases can be developed.


Assuntos
Brônquios/citologia , Brônquios/crescimento & desenvolvimento , Diferenciação Celular/genética , Proliferação de Células/genética , Células Epiteliais/citologia , Mucosa Nasal/citologia , Mucosa Nasal/crescimento & desenvolvimento , Células Estromais/citologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Regulação da Expressão Gênica , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade
17.
Mol Ther Nucleic Acids ; 18: 546-553, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31671347

RESUMO

Fragile X-associated tremor ataxia syndrome (FXTAS) is a rare disorder associated to the presence of the fragile X premutation, a 55-200 CGG repeat expansion in the 5' UTR of the FMR1 gene. Two main neurological phenotypes have been described in carriers of the CGG premutation: (1) neurodevelopmental disorders characterized by anxiety, attention deficit hyperactivity disorder (ADHD), social deficits, or autism spectrum disorder (ASD); and (2) after 50 years old, the FXTAS phenotype. This neurodegenerative disorder is characterized by ataxia and a form of parkinsonism. The molecular pathology of this disorder is characterized by the presence of elevated levels of Fragile X Mental Retardation 1 (FMR1) mRNA, presence of a repeat-associated non-AUG (RAN) translated peptide, and FMR1 mRNA-containing nuclear inclusions. Whereas in the past FXTAS was mainly considered as a late-onset disorder, some phenotypes of patients and altered learning and memory behavior of a mouse model of FXTAS suggested that this disorder involves neurodevelopment. To better understand the physiopathological role of the increased levels of Fmr1 mRNA during neuronal differentiation, we used a small interfering RNA (siRNA) approach to reduce the abundance of this mRNA in cultured cortical neurons from the FXTAS mouse model. Morphological alterations of neurons were rescued by this approach. This cellular phenotype is associated to differentially expressed proteins that we identified by mass spectrometry analysis. Interestingly, phenotype rescue is also associated to the rescue of the abundance of 29 proteins that are involved in various pathways, which represent putative targets for early therapeutic approaches.

18.
Cell Mol Life Sci ; 76(15): 3019-3031, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30904951

RESUMO

Sumoylation is a reversible post-translational modification essential to the modulation of neuronal function, including neurotransmitter release and synaptic plasticity. A tightly regulated equilibrium between the sumoylation and desumoylation processes is critical to the brain function and its disruption has been associated with several neurological disorders. This sumoylation/desumoylation balance is governed by the activity of the sole SUMO-conjugating enzyme Ubc9 and a group of desumoylases called SENPs, respectively. We previously demonstrated that the activation of type 5 metabotropic glutamate receptors (mGlu5R) triggers the transient trapping of Ubc9 in dendritic spines, leading to a rapid increase in the overall synaptic sumoylation. However, the mechanisms balancing this increased synaptic sumoylation are still not known. Here, we examined the diffusion properties of the SENP1 enzyme using a combination of advanced biochemical approaches and restricted photobleaching/photoconversion of individual hippocampal spines. We demonstrated that the activation of mGlu5R leads to a time-dependent decrease in the exit rate of SENP1 from dendritic spines. The resulting post-synaptic accumulation of SENP1 restores synaptic sumoylation to initial levels. Altogether, our findings reveal the mGlu5R system as a central activity-dependent mechanism to maintaining the homeostasis of sumoylation at the mammalian synapse.


Assuntos
Receptor de Glutamato Metabotrópico 5/metabolismo , Sinapses/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Cisteína Endopeptidases/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Humanos , Microscopia de Fluorescência , Neurônios/citologia , Neurônios/metabolismo , Ratos Wistar , Proteína SUMO-1/metabolismo , Sumoilação , Enzimas de Conjugação de Ubiquitina/metabolismo
19.
Front Mol Neurosci ; 11: 342, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319351

RESUMO

Fragile X syndrome (FXS), the most common form of inherited intellectual disability (ID) and a leading cause of autism, results from the loss of expression of the Fmr1 gene which encodes the RNA-binding protein Fragile X Mental Retardation Protein (FMRP). Among the thousands mRNA targets of FMRP, numerous encode regulators of ion homeostasis. It has also been described that FMRP directly interacts with Ca2+ channels modulating their activity. Collectively these findings suggest that FMRP plays critical roles in Ca2+ homeostasis during nervous system development. We carried out a functional analysis of Ca2+ regulation using a calcium imaging approach in Fmr1-KO cultured neurons and we show that these cells display impaired steady state Ca2+ concentration and an altered entry of Ca2+ after KCl-triggered depolarization. Consistent with these data, we show that the protein product of the Cacna1a gene, the pore-forming subunit of the Cav2.1 channel, is less expressed at the plasma membrane of Fmr1-KO neurons compared to wild-type (WT). Thus, our findings point out the critical role that Cav2.1 plays in the altered Ca2+ flux in Fmr1-KO neurons, impacting Ca2+ homeostasis of these cells. Remarkably, we highlight a new phenotype of cultured Fmr1-KO neurons that can be considered a novel cellular biomarker and is amenable to small molecule screening and identification of new drugs to treat FXS.

20.
Nat Commun ; 9(1): 757, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472612

RESUMO

Fragile X syndrome (FXS) is the most frequent inherited cause of intellectual disability and the best-studied monogenic cause of autism. FXS results from the functional absence of the fragile X mental retardation protein (FMRP) leading to abnormal pruning and consequently to synaptic communication defects. Here we show that FMRP is a substrate of the small ubiquitin-like modifier (SUMO) pathway in the brain and identify its active SUMO sites. We unravel the functional consequences of FMRP sumoylation in neurons by combining molecular replacement strategy, biochemical reconstitution assays with advanced live-cell imaging. We first demonstrate that FMRP sumoylation is promoted by activation of metabotropic glutamate receptors. We then show that this increase in sumoylation controls the homomerization of FMRP within dendritic mRNA granules which, in turn, regulates spine elimination and maturation. Altogether, our findings reveal the sumoylation of FMRP as a critical activity-dependent regulatory mechanism of FMRP-mediated neuronal function.


Assuntos
Espinhas Dendríticas/metabolismo , Proteína do X Frágil de Retardo Mental/metabolismo , Sumoilação , Sequência de Aminoácidos , Animais , Células Cultivadas , Espinhas Dendríticas/genética , Espinhas Dendríticas/patologia , Feminino , Proteína do X Frágil de Retardo Mental/química , Proteína do X Frágil de Retardo Mental/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Modelos Neurológicos , Fenótipo , Gravidez , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vesículas Secretórias/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...